
October 6th 2021 — Quantstamp Verified

Cryptex

This audit report was prepared by Quantstamp, the leader in blockchain security.

Executive Summary

Type Staking Function

Auditors Kacper Bąk, Senior Research Engineer

Fayçal Lalidji, Security Auditor

Cristiano Silva, Research Engineer

Timeline 2021-09-16 through 2021-10-06

EVM London

Languages Solidity

Methods Architecture Review, Unit Testing, Functional

Testing, Computer-Aided Verification, Manual

Review

Specification None

Documentation Quality Medium

Test Quality Medium

Source Code
Repository Commit

governance-staking 76961ae

Total Issues 6 (4 Resolved)

High Risk Issues 0 (0 Resolved)

Medium Risk Issues 1 (0 Resolved)

Low Risk Issues 3 (2 Resolved)

Informational Risk Issues 2 (2 Resolved)

Undetermined Risk Issues 0 (0 Resolved)

High Risk The issue puts a large number of users’
sensitive information at risk, or is
reasonably likely to lead to
catastrophic impact for client’s
reputation or serious financial
implications for client and users.

Medium Risk The issue puts a subset of users’
sensitive information at risk, would be
detrimental for the client’s reputation if
exploited, or is reasonably likely to lead
to moderate financial impact.

Low Risk The risk is relatively small and could not
be exploited on a recurring basis, or is a
risk that the client has indicated is low-
impact in view of the client’s business
circumstances.

Informational The issue does not post an immediate
risk, but is relevant to security best
practices or Defence in Depth.

Undetermined The impact of the issue is uncertain.

Unresolved Acknowledged the existence of the risk,
and decided to accept it without
engaging in special efforts to control it.

Acknowledged The issue remains in the code but is a
result of an intentional business or
design decision. As such, it is supposed
to be addressed outside the
programmatic means, such as: 1)
comments, documentation, README,
FAQ; 2) business processes; 3) analyses
showing that the issue shall have no
negative consequences in practice
(e.g., gas analysis, deployment
settings).

Resolved Adjusted program implementation,
requirements or constraints to eliminate
the risk.

Mitigated Implemented actions to minimize the
impact or likelihood of the risk.

https://github.com/cryptexfinance/governance-staking
https://github.com/cryptexfinance/governance-staking/tree/76961aeb6be63f547dc080659f64a4bf455582c0/src

Summary of Findings

During the review we have found a few issues. Notably, one is of medium severity. Furthermore, although the code contains inline comments, it is missing a proper documentation stating

functional and non-functional requirements.

the team has addressed all of the issues as of commit .Update: 6343d69

ID Description Severity Status

QSP-1 Incorrect requirement in notifyRewardAmount() Medium Acknowledged

QSP-2 No checks if addresses are non-zero Low Fixed

QSP-3 Multiple invocations of stake() Low Acknowledged

QSP-4 Missing validation of the number of decimals for ERC20 tokens Low Fixed

QSP-5 Gas optimization Informational Fixed

QSP-6 Withdrawal logic requires users to save all their delegators addresses Informational Mitigated

Quantstamp Audit Breakdown

Quantstamp's objective was to evaluate the repository for security-related issues, code quality, and adherence to specification and best practices.

Possible issues we looked for included (but are not limited to):

Transaction-ordering dependence•

Timestamp dependence•

Mishandled exceptions and call stack limits•

Unsafe external calls•

Integer overflow / underflow•

Number rounding errors•

Reentrancy and cross-function vulnerabilities•

Denial of service / logical oversights•

Access control•

Centralization of power•

Business logic contradicting the specification•

Code clones, functionality duplication•

Gas usage•

Arbitrary token minting•

Methodology

The Quantstamp auditing process follows a routine series of steps:

1. Code review that includes the following
i. Review of the specifications, sources, and instructions provided to Quantstamp to make sure we understand the size, scope, and functionality of the smart

contract.

ii. Manual review of code, which is the process of reading source code line-by-line in an attempt to identify potential vulnerabilities.

iii. Comparison to specification, which is the process of checking whether the code does what the specifications, sources, and instructions provided to Quantstamp
describe.

2. Testing and automated analysis that includes the following:
i. Test coverage analysis, which is the process of determining whether the test cases are actually covering the code and how much code is exercised when we run

those test cases.

ii. Symbolic execution, which is analyzing a program to determine what inputs cause each part of a program to execute.

3. Best practices review, which is a review of the smart contracts to improve efficiency, effectiveness, clarify, maintainability, security, and control based on the
established industry and academic practices, recommendations, and research.

4. Specific, itemized, and actionable recommendations to help you take steps to secure your smart contracts.

Toolset

The notes below outline the setup and steps performed in the process of this audit.

Setup

Tool Setup:

v0.8.0• Slither

Steps taken to run the tools:

Installed the Slither tool: Run Slither from the project directory:pip install slither-analyzer slither .

Findings

https://github.com/crytic/slither

QSP-1 Incorrect requirement in notifyRewardAmount()

Severity: Medium Risk

AcknowledgedStatus:

File(s) affected: DelegatorFactory.sol

The requirement in can be invalid if part of the users do not withdraw their rewards, meaning that the entity in charge of sending the new reward tokens

might send less than expected and the requirement will still execute without throwing.

Description: notifyRewardAmount()

Use instead of checking the contract token balance.Recommendation: ERC20.transferFrom()

the team informed us that can only be called by the owner which will be the core team multi-signature wallet or the DAO; not calling

allows the contract to receive funds from different addresses and give the team a way to prevent being sent by users by mistake to be burned.

Update: notifyRewardAmount() transferFrom()
rewardsTokens

QSP-2 No checks if addresses are non-zero

Severity: Low Risk

FixedStatus:

,File(s) affected: Delegator.sol DelegatorFactory.sol

The functions and do not check if arguments of type address are non-zero.Description: Delegator.constructor() DelegatorFactory.constructor()

Add relevant checks.Recommendation:

QSP-3 Multiple invocations of stake()

Severity: Low Risk

AcknowledgedStatus:

File(s) affected: DelegatorFactory.sol

If is called multiple times for the same , user may be unable to withdraw previous stakes before the last .Description: stake() delegator_ block.timestamp + waitTime

Unless this is intentional, timestamp each stake operation individually so that withdrawals of previous stakes are possible. Otherwise, inform users and document this behavior.Recommendation:

the team informed us that besides acknowledging the issue they provided a mitigation strategy by updating the documentation and the frontend to give a warning to the users before

staking happens.

Update:

QSP-4 Missing validation of the number of decimals for ERC20 tokens

Severity: Low Risk

FixedStatus:

File(s) affected: DelegatorFactory.sol

The contract assumes tokens with 18 decimals. Based on the provided code, it is unclear whether this assumption holds.Description:

Ensure that the used tokens have 18 decimals; otherwise adjust the code accordingly.Recommendation:

QSP-5 Gas optimization

Severity: Informational

FixedStatus:

File(s) affected: DelegatorFactory.sol

calls twice, in the function body and when executing , we recommend to use the state variable

inside instead of calling the .

Description: updateReward() rewardPerToken() earned() rewardPerTokenStored
earned() rewardPerToken()

If a public view function is needed to get the latest reward value off-chain, another function can be added which will optimize the gas consumption.Recommendation:

QSP-6 Withdrawal logic requires users to save all their delegators addresses

Severity: Informational

MitigatedStatus:

File(s) affected: DelegatorFactory.sol

Every time a user stakes, they are free to change the delegator contract address, meaning that when withdrawing a user might be forced to do multiple withdrawals if a single

delegator does not contain a sufficient balance.

Description:

Inform users of this possibility, and, perhaps, recommend sticking to a single delegator.Recommendation:

The team informed us that they created a graph using The Graph to save all the information about the address and amounts to display on the front end. They will also recommend in

the Frontend and community channels to stakers to stick to a single Delegator.

Update:

Automated Analyses

Slither

Slither reported the following:

1. Ignored return values in
1. ,src/Delegator.sol#59

2. ,src/DelegatorFactory.sol#198

3. .
We recommend adding relevant checks. fixed.
src/DelegatorFactory.sol#241

Update:

2. Multiplication performed before division in , however, it is a false positive.DelegatorFactory.notifyRewardAmount()

3. Reentrancy in due to L214, however, it is a false positive.DelegatorFactory.createDelegator()

4. Reentrancy in due to the call in L164 and then variable updates in L170 and 171. We recommend rearranging the
statements.

DelegatorFactory.notifyRewardAmount()

Code Documentation

Although there are inline comments, there is no documentation that would describe functional and non-functional requirements.

Adherence to Best Practices

1. and inherit from but this code is never used. Remove this dependency. fixed.Delegator DelegatorFactory DSTest Update:

2. is not needed in Solidity 8. fixed.SafeMath Update:

3. The modifier modifies state. Typically modifiers are used for checks. fixed.DelegatorFactory.updateReward() Update:

Test Results

Test Suite Results

All tests passed.

Running 10 tests for src/tests/Delegator.t.sol:DelegatorTest
+++ OK, passed 100 tests.
[PASS] testFail_stake_notOwner(uint256) (runs: 100)
+++ OK, passed 100 tests.
[PASS] testFail_removeStake_notEnoughBalance(uint256) (runs: 100)
[PASS] testFail_invalidTokenDecimals() (gas: 114069)
[PASS] test_removeStake() (gas: 141817)
[PASS] test_parameters() (gas: 6071)
[PASS] testFail_invalidToken() (gas: 57376)
+++ OK, passed 100 tests.
[PASS] test_stake(address,uint256) (runs: 100)
[PASS] testFail_invalidDelegatee() (gas: 57272)
+++ OK, passed 100 tests.
[PASS] testFail_removeStake_notOwner(uint256) (runs: 100)
+++ OK, passed 100 tests.
[PASS] test_removeStakeFuzz(address,uint256) (runs: 100)

Running 34 tests for src/tests/DelegatorFactory.t.sol:DelegatorFactoryTest
+++ OK, passed 100 tests.
[PASS] test_updateWaitTimeFuzz(uint256) (runs: 100)
[PASS] testFail_invalidTimelock() (gas: 108141)
[PASS] test_earnRewards() (gas: 1098655)
[PASS] test_delegate() (gas: 807164)
+++ OK, passed 100 tests.
[PASS] testFail_setRewardsDuration_rewardsNotComplete(uint256) (runs: 100)
[PASS] testFail_invalidRemoveDelegator() (gas: 75495)
[PASS] test_setRewardsDuration() (gas: 4803)
[PASS] testFail_invalidCreateDelegator() (gas: 1232)
[PASS] testFail_invalidRemoveAmount() (gas: 587719)
[PASS] test_notifyRewards() (gas: 92699)
[PASS] test_parameters() (gas: 6018)
[PASS] test_unDelegate() (gas: 820958)
[PASS] testFail_invalidStakingTokenDecimals() (gas: 164896)
+++ OK, passed 100 tests.
[PASS] test_notifyRewardsFuzz(uint256) (runs: 100)
+++ OK, passed 100 tests.
[PASS] test_delegateFuzz(address,uint256) (runs: 100)
+++ OK, passed 100 tests.
[PASS] test_createDelegator(address) (runs: 100)
+++ OK, passed 100 tests.
[PASS] testFail_invalidUnDelegateAmount(address,uint256) (runs: 100)
+++ OK, passed 100 tests.
[PASS] test_unDelegateSpecific(address,uint256,uint256) (runs: 100)
[PASS] testFail_notifyRewards_notOwner() (gas: 2028)
[PASS] testFail_setRewardsDuration_notOwner() (gas: 2072)
+++ OK, passed 100 tests.
[PASS] testFail_updateWaitTimeNotAdmin(uint256) (runs: 100)
[PASS] test_updateWaitTime() (gas: 4638)
+++ OK, passed 100 tests.
[PASS] test_unDelegateFuzz(address,uint256) (runs: 100)
[PASS] testFail_invalidAmount() (gas: 587224)
[PASS] testFail_invalidStakingToken() (gas: 108096)
+++ OK, passed 100 tests.
[PASS] test_multipleDelegators(uint256,uint256) (runs: 100)
[PASS] testFail_invalidRewardTokenDecimals() (gas: 165684)
[PASS] testFail_invalidDelegator() (gas: 133161)
+++ OK, passed 100 tests.
[PASS] test_setRewardsDurationFuzz(uint256) (runs: 100)
[PASS] testFail_notifyRewards_rewardToHigh() (gas: 52019)
[PASS] testFail_invalidRewardToken() (gas: 108109)
+++ OK, passed 100 tests.
[PASS] testFail_unDelegateNoWait(address,uint256) (runs: 100)
+++ OK, passed 100 tests.
[PASS] testFail_createDelegator(address) (runs: 100)
+++ OK, passed 100 tests.
[PASS] test_moveDelegation(uint256,uint256) (runs: 100)

✨ Done in 16.26s.

Code Coverage

According to coverage is missing in the following:dapp test --coverage

, fixed.• Delegator.removeStake() Update:

, fixed.• DelegatorFactory.notifyRewardAmount() Update:

, fixed.• DelegatorFactory.setRewardsDuration() Update:

, fixed.• DelegatorFactory.withdraw() Update:

, fixed• DelegatorFactory.updateWaitTime() Update:

.• DelegatorFactory.getRewardForDuration()

Since the codebase is rather small, we recommend covering all statements.

Appendix

File Signatures

The following are the SHA-256 hashes of the reviewed files. A file with a different SHA-256 hash has been modified, intentionally or otherwise, after the security review. You are cautioned that a different SHA-256 hash could be (but is not necessarily) an
indication of a changed condition or potential vulnerability that was not within the scope of the review.

Contracts

04afcfbd19ecb41a12b27ba32c9f364788672ebde6ac5530ad156a0aca4510e8 ./IGovernanceToken.sol

db3ab3ddd126d70da61a71ed26f208d0b36dcd5fadec88b40cf299702181389d ./Delegator.sol

ce06bac7ee0e6c48f986785a07623a7751c955be2402500e47a1b1ebb28a61f2 ./DelegatorFactory.sol

Tests

6389049058381d33469e70132905e607e2ba2d3cc355c576da7ece403168f180 ./tests/hevm.sol

2d4b3bbbcc61211c4203d451298de2fa06f5c230bf93e3dfa67bb95c23d84014 ./tests/Delegator.t.sol

551b9514896898808b877c9b53db8d6d8ce16cb0e55ee4fbbaef573d67364d43 ./tests/DelegatorFactory.t.sol

Changelog

2021-09-17 - Initial report•

2021-10-06 - Reaudit based on commit• 6343d69

About Quantstamp

Quantstamp is a Y Combinator-backed company that helps to secure blockchain platforms at scale using computer-aided reasoning tools, with a mission to help boost the

adoption of this exponentially growing technology.

With over 1000 Google scholar citations and numerous published papers, Quantstamp's team has decades of combined experience in formal verification, static analysis,

and software verification. Quantstamp has also developed a protocol to help smart contract developers and projects worldwide to perform cost-effective smart contract

security scans.

To date, Quantstamp has protected $5B in digital asset risk from hackers and assisted dozens of blockchain projects globally through its white glove security assessment

services. As an evangelist of the blockchain ecosystem, Quantstamp assists core infrastructure projects and leading community initiatives such as the Ethereum

Community Fund to expedite the adoption of blockchain technology.

Quantstamp's collaborations with leading academic institutions such as the National University of Singapore and MIT (Massachusetts Institute of Technology) reflect our

commitment to research, development, and enabling world-class blockchain security.

Timeliness of content

The content contained in the report is current as of the date appearing on the report and is subject to change without notice, unless indicated otherwise by Quantstamp;

however, Quantstamp does not guarantee or warrant the accuracy, timeliness, or completeness of any report you access using the internet or other means, and assumes

no obligation to update any information following publication.

Notice of confidentiality

This report, including the content, data, and underlying methodologies, are subject to the confidentiality and feedback provisions in your agreement with Quantstamp.

These materials are not to be disclosed, extracted, copied, or distributed except to the extent expressly authorized by Quantstamp.

Links to other websites

You may, through hypertext or other computer links, gain access to web sites operated by persons other than Quantstamp, Inc. (Quantstamp). Such hyperlinks are

provided for your reference and convenience only, and are the exclusive responsibility of such web sites' owners. You agree that Quantstamp are not responsible for the

content or operation of such web sites, and that Quantstamp shall have no liability to you or any other person or entity for the use of third-party web sites. Except as

described below, a hyperlink from this web site to another web site does not imply or mean that Quantstamp endorses the content on that web site or the operator or

operations of that site. You are solely responsible for determining the extent to which you may use any content at any other web sites to which you link from the report.

Quantstamp assumes no responsibility for the use of third-party software on the website and shall have no liability whatsoever to any person or entity for the accuracy or

completeness of any outcome generated by such software.

Disclaimer

This report is based on the scope of materials and documentation provided for a limited review at the time provided. Results may not be complete nor inclusive of all

vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available basis. You agree that your access and/or use, including but not limited to any

associated services, products, protocols, platforms, content, and materials, will be at your sole risk. Blockchain technology remains under development and is subject to

unknown risks and flaws. The review does not extend to the compiler layer, or any other areas beyond the programming language, or other programming aspects that

could present security risks. A report does not indicate the endorsement of any particular project or team, nor guarantee its security. No third party should rely on the

reports in any way, including for the purpose of making any decisions to buy or sell a product, service or any other asset. To the fullest extent permitted by law, we disclaim

all warranties, expressed or implied, in connection with this report, its content, and the related services and products and your use thereof, including, without limitation, the

implied warranties of merchantability, fitness for a particular purpose, and non-infringement. We do not warrant, endorse, guarantee, or assume responsibility for any

product or service advertised or offered by a third party through the product, any open source or third-party software, code, libraries, materials, or information linked to,

called by, referenced by or accessible through the report, its content, and the related services and products, any hyperlinked websites, any websites or mobile applications

appearing on any advertising, and we will not be a party to or in any way be responsible for monitoring any transaction between you and any third-party providers of

products or services. As with the purchase or use of a product or service through any medium or in any environment, you should use your best judgment and exercise

caution where appropriate. FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF, INCLUDING ANY ASSOCIATED SERVICES OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

Cryptex Audit

