
April 6th 2021 — Quantstamp Verified

Cryptex Finance
This security assessment was prepared by Quantstamp, the leader in blockchain security

Executive Summary

Type Collateralized asset

Auditors Sebastian Banescu, Senior Research Engineer
Jose Ignacio Orlicki, Senior Engineer
Joseph Xu, Technical R&D Advisor

Timeline 2021-03-01 through 2021-03-18

EVM Muir Glacier

Languages Solidity

Methods Architecture Review, Unit Testing, Functional
Testing, Computer-Aided Verification, Manual
Review

Specification TCAP Documentation
Whitepaper

Documentation Quality Medium

Test Quality Undetermined

Source Code
Repository Commit

contracts 9bd0481…755d32e

Total Issues 23 (21 Resolved)

High Risk Issues 1 (1 Resolved)

Medium Risk Issues 2 (2 Resolved)

Low Risk Issues 8 (8 Resolved)

Informational Risk Issues 8 (7 Resolved)

Undetermined Risk Issues 4 (3 Resolved)

High Risk The issue puts a large number of users’
sensitive information at risk, or is
reasonably likely to lead to catastrophic
impact for client’s reputation or serious
financial implications for client and
users.

Medium Risk The issue puts a subset of users’
sensitive information at risk, would be
detrimental for the client’s reputation if
exploited, or is reasonably likely to lead
to moderate financial impact.

Low Risk The risk is relatively small and could not
be exploited on a recurring basis, or is a
risk that the client has indicated is low-
impact in view of the client’s business
circumstances.

Informational The issue does not post an immediate
risk, but is relevant to security best
practices or Defence in Depth.

Undetermined The impact of the issue is uncertain.

Unresolved Acknowledged the existence of the risk,
and decided to accept it without
engaging in special efforts to control it.

Acknowledged The issue remains in the code but is a
result of an intentional business or
design decision. As such, it is supposed
to be addressed outside the
programmatic means, such as: 1)
comments, documentation, README,
FAQ; 2) business processes; 3) analyses
showing that the issue shall have no
negative consequences in practice (e.g.,
gas analysis, deployment settings).

Resolved Adjusted program implementation,
requirements or constraints to eliminate
the risk.

Mitigated Implemented actions to minimize the
impact or likelihood of the risk.

https://docs.cryptex.finance/
https://cryptex.finance/White_Paper.pdf
https://github.com/cryptexglobal/contracts
https://github.com/cryptexglobal/contracts/compare/9bd0481f20301a655909fe33cc03d9d931bc30ef...755d32ecb60119fdc0591b37b60d8cd3557b4b5a


Summary of Findings

Quantstamp has performed an audit of the diff corresponding to the commit hash which was and including changes up to commit hash . The
changes mainly involve newly added code for the project governance. During this audit we have identified 23 security issues ranging through all security levels, 4 issues in the
specification, 2 issues in code comments and 3 deviations from best practices. Additionally we have noticed 3 failing tests which lead the coverage to be shown as 0% for the newly added
governance contracts. We recommend addressing all these issues before deploying the smart contracts in production.

9bd0481 previously audited 755d32e

ID Description Severity Status

QSP-1 Wrong token being transferred on claimVest() High Fixed

QSP-2 Staking token can be withdrawn from the rewards contract Medium Fixed

QSP-3 TCAP Token can be withdrawn from the vault Medium Mitigated

QSP-4 Oracle price could be stale Low Fixed

QSP-5 Loss of rewards due to truncation Low Fixed

QSP-6 Ratio can be set to any value Low Fixed

QSP-7 Burn fee can be set to any value Low Fixed

QSP-8 Treasury can be set to any address Low Fixed

QSP-9 Burn fee not paid to the treasury Low Fixed

QSP-10 Median is more robust than average for aggregated oracles Low Fixed

QSP-11 Dangerous use of strict equality Low Fixed

QSP-12 Allowance Double-Spend Exploit Informational Mitigated

QSP-13 Misleading error message Informational Fixed

QSP-14 Single point of failure for price feeds Informational Acknowledged

QSP-15 Clone-and-Own Informational Fixed

QSP-16 Receipts with value zero for invalid proposals Informational Fixed

QSP-17 Loss of precision due to multiplication after division Informational Fixed

QSP-18 Unchecked Return Value Informational Fixed

QSP-19 Missing input validationaddress Informational Fixed

QSP-20 Incorrect amount may be withdrawn from the reward handler Undetermined Acknowledged

QSP-21 state variable not read in the contractvestingBegin LiquidityReward Undetermined Fixed

QSP-22 Unclear vesting period interpretation Undetermined Fixed

QSP-23 can be arbitrarily set in the constructorvestingRatio LiquidityReward Undetermined Fixed

https://certificate.quantstamp.com/full/cryptex


Quantstamp Audit Breakdown

Quantstamp's objective was to evaluate the repository for security-related issues, code quality, and adherence to specification and best practices.

Possible issues we looked for included (but are not limited to):

Transaction-ordering dependence•

Timestamp dependence•

Mishandled exceptions and call stack limits•

Unsafe external calls•

Integer overflow / underflow•

Number rounding errors•

Reentrancy and cross-function vulnerabilities•

Denial of service / logical oversights•

Access control•

Centralization of power•

Business logic contradicting the specification•

Code clones, functionality duplication•

Gas usage•

Arbitrary token minting•

Methodology

The Quantstamp auditing process follows a routine series of steps:

1. Code review that includes the following
i. Review of the specifications, sources, and instructions provided to Quantstamp to make sure we understand the size, scope, and functionality of the smart

contract.

ii. Manual review of code, which is the process of reading source code line-by-line in an attempt to identify potential vulnerabilities.

iii. Comparison to specification, which is the process of checking whether the code does what the specifications, sources, and instructions provided to Quantstamp
describe.

2. Testing and automated analysis that includes the following:
i. Test coverage analysis, which is the process of determining whether the test cases are actually covering the code and how much code is exercised when we run

those test cases.

ii. Symbolic execution, which is analyzing a program to determine what inputs cause each part of a program to execute.

3. Best practices review, which is a review of the smart contracts to improve efficiency, effectiveness, clarify, maintainability, security, and control based on the
established industry and academic practices, recommendations, and research.

4. Specific, itemized, and actionable recommendations to help you take steps to secure your smart contracts.

Toolset

The notes below outline the setup and steps performed in the process of this audit.

Setup

Tool Setup:

v0.7.0• Slither

Steps taken to run the tools:

1. Installed the Slither tool: pip install slither-analyzer

2. Run Slither from the project directory: slither .

Findings

QSP-1 Wrong token being transferred on claimVest()

Severity: High Risk

FixedStatus:

File(s) affected: LiquidityReward.sol

The function transfers the staking token as opposed to the reward token.Description: claimVest()

Transfer the reward token instead of the staking token on L183.Recommendation:

QSP-2 Staking token can be withdrawn from the rewards contract

Severity: Medium Risk

FixedStatus:

File(s) affected: LiquidityReward.sol

The function contains a check at the start, which only checks that the of the ERC20 token to withdraw is not equal to theDescription: LiquidityReward.recoverERC20() _tokenAddress

https://github.com/crytic/slither


. However, the error message of this check states that: "LiquidityReward::recoverERC20: Cannot withdraw the staking or rewards tokens". Note that even though the error
message indicates that the staking token cannot with withdrawn, there is no check to prevent this.
rewardsToken

Add a conjunction that also checks in the same statement.Recommendation: _tokenAddress != address(stakingToken) require

QSP-3 TCAP Token can be withdrawn from the vault

Severity: Medium Risk

MitigatedStatus:

File(s) affected: IVaultHandler.sol

The owner can recover both TCAP Token and any ERC20 collateral using (unless TCAP Token is the collateral).Description: recoverERC20()

Change in Line 541 to .Recommendation: || &&

The specification and code have been updated: the TCAP token can still be withdrawn. The collateral token cannot be withdrawn anymore.Update:

QSP-4 Oracle price could be stale

Severity: Low Risk

FixedStatus:

File(s) affected: ChainlinkOracle.sol

The function simply returns the price from the call to of Chainlink, ignoring all
other return values from this function. This could lead to stale prices according to the Chainlink documentation:
Description: ChainlinkOracle.getLatestAnswer() AggregatorV3Interface.latestRoundData()

1. : "if answeredInRound < roundId could indicate stale data."under current notifications

2. : "A timestamp with zero value means the round is not complete and should not be used."under historical price data

We recommend adding require statements that check for the aforementioned conditions in all the occurrences of those functions.Recommendation:

QSP-5 Loss of rewards due to truncation

Severity: Low Risk

FixedStatus:

File(s) affected: LiquidityReward.sol

The function splits the into and . However, it does this in an inefficient and imprecise way, which
could lead to small reward losses due to the truncation caused by integer division. The following code snippet is used:
Description: LiquidityReward.getReward() reward vestingReward transferReward

uint256 hundred = 100;
uint256 vestingReward = (reward.mul(vestingRatio)).div(100);
uint256 transferReward = (reward.mul(hundred.sub(vestingRatio))).div(100);

Compute based on the value of , which would make the code more efficient and eliminate any losses:Recommendation: transferReward vestingReward

uint256 vestingReward = (reward.mul(vestingRatio)).div(100);
uint256 transferReward = reward.sub(vestingReward);

QSP-6 Ratio can be set to any value

Severity: Low Risk

FixedStatus:

File(s) affected: IVaultHandler.sol

The function does not contain any constraints on the value of the input parameter. Therefore, the owner of the contract could set the
value to any unsigned integer. Setting it to a value lower than 100 could have very serious consequences.

Description: IVaultHandler.setRatio() _ratio
ratio

Given that the documentation and whitepaper indicate that TCAP is "150% fully backed", there should be a check that .Recommendation: ratio > 150

QSP-7 Burn fee can be set to any value

Severity: Low Risk

FixedStatus:

File(s) affected: IVaultHandler.sol

The function does not contain any constraints on the value of the input parameter. Therefore, the owner of the contract could set the
value to any unsigned integer. Setting it to a value close-to or grater than 100 could have very serious consequences.

Description: IVaultHandler.setBurnFee() _burnFee
burnFee

Decide on a maximum acceptable value for the and add a require statement that checks that the is never set above this limit. The relationship between
the burn fee and liquidation penalty should also be taken into consideration because the burn fee should be significantly lower than the liquidation penalty to incentivize keepers.
Recommendation: burnFee burnFee

QSP-8 Treasury can be set to any address

Severity: Low Risk

https://docs.chain.link/docs/developer-communications#current-notifications
https://docs.chain.link/docs/historical-price-data#solidity


FixedStatus:

File(s) affected: IVaultHandler.sol

The function does not contain any constraints on the value of the input parameter. Therefore, the owner of the contract could set
the value to any address including an EOA.
Description: IVaultHandler.setTreasury() _treasury

treasury

Add an interface for the treasury contract. The treasury should have an interface constant that conforms to ERC165, which can be checked using the
function. This would also make treasury management more transparent for end-users.

Recommendation:
ERC165Checker.supportsInterface()

QSP-9 Burn fee not paid to the treasury

Severity: Low Risk

FixedStatus:

File(s) affected: IVaultHandler.sol

The burn fee is not paid to the treasury in the function. Comments indicate that this is currently a //TODO item.Description: liquidateVault()

Complete the //TODO item.Recommendation:

QSP-10 Median is more robust than average for aggregated oracles

Severity: Low Risk

FixedStatus:

The whitepaper shows an example of 5 data sources for TCAP. If 1 or 2 of these 5 data sources are compromised and start sending irregular prices, using a median price
aggregation of total market cap sources, instead of an average price, is more robust. This allows the aggregated price to continue to operate without pause until the sources are fixed or
decommissioned. Otherwise, the incident must be immediately detected and trading stopped until source data is fixed or decommissioned.

Description:

Exploit Scenario:

1. Mallory compromises the CoinExample data source.

2. CoinExample starts sending a price with a 50% premium above the previous average.

3. On average, the TCAP price goes up by 10%

4. Mallory burns TCAP tokens getting a 10% premium.

Use median instead of average (mean) to aggregate the oracle prices.Recommendation:

The Chainlink oracle used in the implementation provides the median value by default. The team has updated the whitepaper such that it specifies the median instead of the average
value.
Update:

QSP-11 Dangerous use of strict equality

Severity: Low Risk

FixedStatus:

File(s) affected: IVaultHandler.sol

Two different instances of this issue have been found:Description:

1. The function makes use of a strict equality between the return value of and the input
parameter. This puts an unnecessary burden on the caller to compute the required amount of TCAP for the liquidation and in case the price is moving fast (in either direction), the call to

might fail even though the caller is willing to pay up to a certain amount of TCAP tokens.

IVaultHandler.liquidateVault() requiredLiquidationTCAP(vault.Id) _requiredTCAP

liquidateVault()

2. The modifier makes use of strict equality between the and the . This puts an unnecessary burden on the caller of the function
to compute the exact fee amount. Otherwise, the call will fail.

IVaultHandler.withBurnFee() msg.value fee burn()

In the order of the items above:Recommendation:

1. Change the design of this function such that takes in the maximum amount of TCAP ( ) that the caller is willing to pay, instead of the exact
amount necessary for liquidation ( ). Also change the condition on L476 from strict equality to .

liquidateVault() _maxTCAP
_requiredTCAP require _maxTCAP >= req

2. Change the strict equality in the modifier to and return the excess amount back to the caller.IVaultHandler.withBurnFee() fee <= msg.value

QSP-12 Allowance Double-Spend Exploit

Severity: Informational

MitigatedStatus:

File(s) affected: Ctx.sol

As it presently is constructed, the contract is vulnerable to the , as with other ERC20 tokens. This issue is already acknowledged in the comments of
the function.
Description: allowance double-spend exploit

approve()

Exploit Scenario:

1. Alice allows Bob to transfer amount of Alice's tokens ( ) by calling the method on smart contract (passing Bob's address and as method
arguments)

N N>0 approve() Token N

2. After some time, Alice decides to change from to ( ) the number of Alice's tokens Bob is allowed to transfer, so she calls the method again, this time
passing Bob's address and as method arguments

N M M>0 approve()
M

3. Bob notices Alice's second transaction before it was mined and quickly sends another transaction that calls the method to transfer Alice's tokens
somewhere

transferFrom() N

https://github.com/OpenZeppelin/openzeppelin-solidity/blob/b4f87bb8fc25fb07f73099701e39e167a3d36465/contracts/token/ERC20/ERC20.sol#L71-L78


4. If Bob's transaction will be executed before Alice's transaction, then Bob will successfully transfer Alice's tokens and will gain an ability to transfer another tokensN M

5. Before Alice notices any irregularities, Bob calls method again, this time to transfer Alice's tokens.transferFrom() M

Pending community agreement on an ERC standard that would protect against this exploit, we recommend that developers of applications dependent on /
should keep in mind that they have to set allowance to 0 first and verify if it was used before setting the new value. Teams who decide to wait for such a standard should

make these recommendations to app developers who work with their token contract.

Recommendation: approve()
transferFrom()

The exploit (as described above) is mitigated through the use of functions that increase/decrease the allowance relative to its current value, such as and
.

Update: increaseAllowance()
decreaseAllowance()

QSP-13 Misleading error message

Severity: Informational

FixedStatus:

File(s) affected: IVaultHandler.sol

The function allows the contract owner to recover "LP Rewards from other systems such as BAL to be distributed to holders".
According to the error message in the single statement from this function: "Cannot withdraw the staking, collateral or rewards tokens". However, only the staking and collateral token
addresses are checked by that statement. It is unclear what the "rewards tokens" part of the error message is referring to, however, the one thing that comes to mind is CTX tokens,
which are never supposed to reach the contract.

Description: IVaultHandler.recoverERC20() IVaultHandler
require

require
IVaultHandler

Either change the error message in the statement to indicate that only the staking and collateral tokens cannot be withdrawn or in case CTX tokens would be held
by the contract, add another disjunction to the condition checked by the statement, which should check that the is different from the CTX token
address.

Recommendation: require
IVaultHandler require _tokenAddress

Removed the TCAP Token from the statement and updated the error message to indicate that only collateral should be recoverable. This issue is related to QSP-3.Update: require

QSP-14 Single point of failure for price feeds

Severity: Informational

AcknowledgedStatus:

File(s) affected: IVaultHandler.sol

The price feeds rely on a single oracle, namely the Chainlink Aggregator V3, which is indeed robust. However, in the event of any large scale attack/disruption of the Chainlink
network, the Cryptex vault handlers would be severely impacted.
Description:

Consider adding at least one other robust price feed, which is independent of Chainlink.Recommendation:

From dev team:Update:

For the first months Chainlink will be the default oracle. We will upgrade to a more robust version in the future with the support of different oracles. We added some functions to
increase protection from users like a max cap on TCAP supply that can be updated. Pausing minting of TCAP can help control the situation in case Chainlink goes down.

QSP-15 Clone-and-Own

Severity: Informational

FixedStatus:

File(s) affected: SafeMath.sol

The clone-and-own approach involves copying and adjusting open source code at one's own discretion. From the development perspective, it is initially beneficial as it reduces the
amount of effort. However, from the security perspective, it involves some risks as the code may not follow the best practices, may contain a security vulnerability, or may include intentionally or
unintentionally modified upstream libraries.

Description:

Rather than the clone-and-own approach, a good industry practice is to use the Truffle framework for managing library dependencies. This eliminates the clone-and-own
risks yet allows for following best practices, such as, using libraries.
Recommendation:

QSP-16 Receipts with value zero for invalid proposals

Severity: Informational

FixedStatus:

File(s) affected: GovernorAlpha.sol

The function can return receipts with value zero for invalid proposals because got moved out of the
struct. It is not clear why this change was introduced since the prior audit, as everything else is either naming or linting changes.
Description: getReceipt() mapping(address => Receipt) receipts Proposal

Add the following statement .Recommendation: require(proposalCount >= proposalId && proposalId > 0, "GovernorAlpha::getReceipt: invalid proposal id");

QSP-17 Loss of precision due to multiplication after division

Severity: Informational

FixedStatus:

File(s) affected: IVaultHandler.sol

Division in Solidity leads to truncation and loss of precision. The effect of truncation is exacerbated if multiplication is performed on the result of a division. The following instance
has been detected:
Description:

1. performs a multiplication on the result of a division:IVaultHandler.liquidationReward
(contracts/IVaultHandler.sol#684)reward = (req.mul(liquidationPenalty.add(100))).div(100)•

(contracts/IVaultHandler.sol#685)rewardCollateral = (reward.mul(tcapPrice)).div(collateralPrice)•



Try to perform division after multiplication or describe why this is not possible in the 3 items from the description.Recommendation:

QSP-18 Unchecked Return Value

Severity: Informational

FixedStatus:

File(s) affected: LiquidityReward.sol

Most functions will return a or value upon success. Some functions, like , are more crucial to check than others. It's important to ensure that every necessary
function is checked. L176-184, ignores return value by . If the function of the staking token does not fail on an
unsuccessful transfer, then the function would return successfully without the sender having received the claim amount.

Description: true false send()
LiquidityReward.claimVest() stakingToken.transfer() transfer()

claimVest()

Check the return value of on L183.Recommendation: transfer()

Fixed by using instead of on L183.Update: safeTransfer() transfer()

QSP-19 Missing input validationaddress

Severity: Informational

FixedStatus:

,File(s) affected: Orchestrator.sol RewardHandler.sol

Input parameters of type should always be checked to be different from to avoid sending funds to such an address by mistake. The following functions and
parameters are lacking such a check:
Description: address address(0)

1. in on L96.Orchestrator.constructor(address)._guardian Orchestrator.sol

2. in on L247.Orchestrator.retrieveETH(address)._to Orchestrator.sol

3. lacks a zero-check on
on L328-329.

Orchestrator.executeTransaction(address,uint256,string,bytes).target (success,returnData) = target.call{value: value}
(callData)

4. in on L92.RewardHandler.constructor(address,address,address)._vault RewardHandler.sol

Add statements to check that the values enumerated above are not or provide a description as to why this is not needed.Recommendation: require address(0)

QSP-20 Incorrect amount may be withdrawn from the reward handler

Severity: Undetermined

AcknowledgedStatus:

File(s) affected: IVaultHandler.sol

The function withdraws from the for the account. However, this amount may be larger
than the amount that was staked when the owner of the vault minted TCAP, because the is the output of , which is different than the vault
debt. Note that the vault owner has only staked an amount equal to the amount of TCAP tokens minted, which is equal to the vault debt. If the , then the

call will fail due to an integer underflow that is caught by the SafeMath function inside of the function.

Description: IVaultHandler.liquidateVault() _requiredTCAP rewardHandler vault.Owner
_requiredTCAP requiredLiquidationTCAP()

_requiredTCAP > vault.Debt
liquidateVault() sub RewardHandler.withdraw()

Withdraw instead of on L489.Recommendation: vault.Debt _requiredTCAP

From dev team:Update:

tracks the current debt of the user, removing all the debt will leave a false value as TCAP debt still exists from the user. A liquidation doesn't remove all debt, only
sets the vault back to a safer ratio, meaning that won’t be than .
RewardHandler

requiredTCAP > Debt

QSP-21 state variable not read in the contractvestingBegin LiquidityReward

Severity: Undetermined

FixedStatus:

File(s) affected: LiquidityReward.sol

On the one hand the state variable is never read in the contract, which may indicate that it is not actually needed. On the other hand, the
whitepaper indicates that the vesting period should be 6 months:
Description: vestingBegin LiquidityReward

In order to minimize the volatility of CTX due to new issuance from community rewards, newly issued CTX tokens shall be subjected to a vesting period of 6 months where 1/3rd of the
reward is immediately available while the remaining 2/3rds reward will not be accessible until 6 months vesting period has been reached.

However, the code allows setting the and arbitrarily and hence the vesting period could be different than 6 months.vestingBegin vestingEnd

Either enforce that the vesting period be 6 months in the code, or update the specification to reflect that the vesting period could be arbitrarily determined by the contract
deployer.
Recommendation:

From dev team:Update:

Removed the variable as it’s not needed. The deployer can define the duration of the rewards using the variable.vestingBegin vestingEnds

QSP-22 Unclear vesting period interpretation

Severity: Undetermined

FixedStatus:

File(s) affected: LiquidityReward.sol

The whitepaper indicates that:Description:



In order to minimize the volatility of CTX due to new issuance from community rewards, newly issued CTX tokens shall be subjected to a vesting period of 6 months where 1/3rd of the
reward is immediately available while the remaining 2/3rds reward will not be accessible until 6 months vesting period has been reached.

This can be interpreted in 2 ways:

1. Whenever a user calls a new 6 month vesting period starts for the rewards of that user.getRewards()

2. There is a global vesting period of 6 months and once that period ends any call to will allow the user to obtain the full reward.getRewards()

The implementation in is essentially the 2nd option, however, with the inefficiency that the user needs to also call after calling in order to
obtain the full reward after the global vesting period has ended.

LiquidityReward claimVest() getRewards()

If the 2nd option is indeed intended, then add a check in and allow the users to obtain the full reward after the global vesting period has ended, without
needing to call . Otherwise, if the 1st option is intended the and state variables must be turned into mappings that hold individual vesting periods.
Recommendation: getReward()

claimVest() vestingBegin vestingEnd

Fixed according to option 2. From dev team:Update:

Added transfer of all the rewards if time is greater than vesting.

QSP-23 can be arbitrarily set in the constructorvestingRatio LiquidityReward

Severity: Undetermined

FixedStatus:

File(s) affected: LiquidityReward.sol

One the one hand, the can be arbitrarily set in the constructor, because there is no constraint on the value of the state variable being between
0 and 100%. On the other hand, the code comment of the function says: "only 70% of reward is inmediate transfered the rest is locked into vesting".
Moreover, the whitepaper indicates something slightly different:

Description: vestingRatio LiquidityReward
LiquidityReward.getReward()

In order to minimize the volatility of CTX due to new issuance from community rewards, newly issued CTX tokens shall be subjected to a vesting period of 6 months where 1/3rd of the
reward is immediately available while the remaining 2/3rds reward will not be accessible until 6 months vesting period has been reached.

Align the code comments and the whitepaper to the right amount. Since this amount seems to be fixed, it should be a constant rather than a state variable that is initialized in
the constructor. In addition, modify the comment for function to say “30% of reward is vested and the rest immediately transferred”. The current @dev comment can cause
confusion and future developers may incorrectly set .

Recommendation:
getReward()
vestingRatio = 70

From dev team:Update:

Updated comments and whitepaper, for the vesting ratio, also the variable is set on the constructor as the reward might change for different reward programs in the future

Automated Analyses

Slither

Slither has detected 225 results out of which the majority have been filtered out as false positives and the rest have been integrated in the findings from this report.

Adherence to Specification

The following deviations from the specification were encountered:

1. The says that: "The Orchestrator implements a 3 day timelock for each function in order to change the configuration settings of it's child

components […]". This is not the case for any of the contract functions. This timelocked feature that the text is referring to seems to have been added to

the contract. However, we did not find any description for the contract in the specification. Moreover, the 3 day timelock seems to be

only an example value, because the contract allows delays between 2 and 30 days. Users will have to check actual value set in the contract

instance used by .

Orchestrator description

Orchestrtor
GovernorAlpha GovernorAlpha

Timelock delay Timelock
GovernorAlpha

2. The indicates that the contract has a modifier which was not found in the code.dedicated Orchestrator page Orchestrator notLocked

3. Both the whitepaper and the docs website say that TCAP is a "150% fully backed, fully collateralized asset". However, this 150% value is not fixed in the code and can be

set to any value by the owner/governance that can call the function at any time.IVaultHandler.setRatio()

4. There are multiple typos in the whitepaper regarding the calculation methodology, especially under the Liquidation Event section.

The denominator for the liquidation TCAP required LA should be .r − (p + 100)•

Division is used instead of multiplication for .(C ∗ cp)/P•

Code Documentation

The following issues were encountered in the code comments:

1. Typo on L543 in : "rewards tokens" -> "reward tokens".[Unresolved] IVaultHandler.sol

2. Typo on L300 in : "inmediate transfered" -> "immediately transferred".[Fixed] LiquidityRewards.sol

Adherence to Best Practices

The following deviations from best practices have been encoutered during the audit:

https://docs.cryptex.finance/tcap#orchestrator
https://docs.cryptex.finance/contracts/orchestrator


1. The following parameters of type are not :event address indexed

in the event[Fixed] _rewardHandler NewRewardHandler•

in the event[Unresolved] _tresury NewTreasury•

in the event[Unresolved] _token Recovered•

2. TODOs should not be present in production code. Here are the instances we found:[Fixed]

"TODO: this should be modifier" on L736 in IVaultHandler.sol•

"@dev The fee goes to the treasury contract //TODO" on L457 in IVaultHandler.sol•

"TODO: Add Permit for gasless transactions" on L10 in TCAP.sol•

3. Typo in parameter name on L132 in : .[Unresolved] IVaultHandler.sol address _tresury

Test Results

Test Suite Results

During test execution, we have noticed 3 failing tests. Error messages are given below.

<

The aforementioned issue has been fixed and we confirm that all 108 tests are passingUpdate:

Network Info
============
> HardhatEVM: v2.0.8
> network:    hardhat

Chainlink Oracle
✓ ...should deploy the contract (176ms)
✓ ...should get the oracle answer

ERC20 Vault
✓ ...should deploy the contract (1089ms)
✓ ...should allow the owner to set the treasury address (160ms)
✓ ...should return the token price
✓ ...should allow users to create a vault (76ms)
✓ ...should get vault by id
✓ ...should allow user to stake collateral (294ms)
✓ ...should allow user to retrieve unused collateral (214ms)
✓ ...should return the correct minimal collateral required (80ms)
✓ ...shouldn't allow minting above cap (281ms)
✓ ...should allow user to mint tokens (195ms)
✓ ...should allow token transfers (62ms)
✓ ...shouldn't allow user to send tokens to tcap contract
✓ ...should allow users to get collateral ratio
✓ ...shouln't allow users to retrieve stake unless debt is paid (54ms)
✓ ...should calculate the burn fee (66ms)
✓ ...should allow users to burn tokens (250ms)
✓ ...should update the collateral ratio
✓ ...should allow users to retrieve stake when debt is paid (44ms)
✓ ...should test liquidation requirements (194ms)
✓ ...should get the required collateral for liquidation (68ms)
✓ ...should get the liquidation reward (94ms)
✓ ...should allow liquidators to return profits (73ms)
✓ ...should allow users to liquidate users on vault ratio less than ratio (584ms)
✓ ...should allow owner to pause contract (47ms)
✓ ...shouldn't allow contract calls if contract is paused (40ms)
✓ ...should allow owner to unpause contract (42ms)

ETH Vault
✓ ...should deploy the contract (1088ms)
✓ ...should allow the owner to set the treasury address (125ms)
✓ ...should return the token price
✓ ...should allow users to create a vault (58ms)
✓ ...should get vault by id
✓ ...should allow user to stake weth collateral (200ms)
✓ ...should allow user to stake eth collateral (117ms)
✓ ...should allow user to retrieve unused collateral on eth (152ms)
✓ ...should allow user to retrieve unused collateral on weth (159ms)
✓ ...should return the correct minimal collateral required (53ms)
✓ ...should allow to earn fees if reward address is set (65ms)
✓ ...should allow user to mint tokens (288ms)
✓ ...should allow user to earn rewards
✓ ...should allow users to get collateral ratio
✓ ...shouln't allow users to retrieve stake unless debt is paid (56ms)
✓ ...should calculate the burn fee (65ms)
✓ ...should allow users to burn tokens (308ms)
✓ ...should update the collateral ratio
✓ ...should allow users to retrieve stake when debt is paid
✓ ...should test liquidation requirements (219ms)
✓ ...should get the required collateral for liquidation (69ms)
✓ ...should get the liquidation reward (95ms)
✓ ...should allow liquidators to return profits (83ms)
✓ ...should allow users to liquidate users on vault ratio less than ratio (578ms)
✓ ...should allow owner to pause contract (45ms)
✓ ...shouldn't allow contract calls if contract is paused (39ms)
✓ ...should allow owner to unpause contract (45ms)

Liquidity Mining Reward
✓ ...should deploy the contract (263ms)
✓ ...should set the constructor values
✓ ...should allow an user to stake (105ms)
✓ ...should allow owner to fund the reward handler (66ms)
✓ ...should allow user to earn rewards (80ms)
✓ ...should allow user to retrieve rewards (67ms)
✓ ...should allow user to withdraw (77ms)
✓ ...should allow vault to exit (144ms)
✓ ...shouldn't allow to earn after period finish  (87ms)
✓ ...should allow to claim vesting after vesting time (47ms)

Orchestrator Contract
✓ ...should deploy the contract (1318ms)
✓ ...should set the owner
✓ ...should set the guardian (48ms)
✓ ...should set vault ratio (85ms)
✓ ...should set vault burn fee (74ms)
✓ ...should set vault liquidation penalty (61ms)
✓ ...should prevent liquidation penalty + 100 to be above ratio
✓ ...should pause the Vault (139ms)
✓ ...should unpause the vault (67ms)
✓ ...should set the liquidation penalty to 0 on emergency (143ms)
✓ ...should set the burn fee to 0 on emergency (134ms)
✓ ...should be able to send funds to owner of orchestrator
✓ ...should enable the TCAP cap (62ms)
✓ ...should set the TCAP cap (61ms)
✓ ...should add vault to TCAP token (106ms)
✓ ...should remove vault to TCAP token (102ms)
✓ ...should allow to execute a custom transaction (124ms)

Reward Handler
✓ ...should deploy the contract (304ms)
✓ ...should set the constructor values
✓ ...should allow a vault to stake for a user (91ms)
✓ ...should allow owner to fund the reward handler (65ms)
✓ ...should allow user to earn rewards (84ms)
✓ ...should allow user to retrieve rewards (48ms)
✓ ...should allow vault to withdraw (67ms)
✓ ...should allow vault to exit (103ms)
✓ ...shouldn't allow to earn after period finish  (80ms)

TCAP Token



✓ ...should deploy the contract (206ms)
✓ ...should set the correct initial values
✓ ...should have the ERC20 standard functions
✓ ...should allow to approve tokens
✓ ...shouldn't allow users to mint
✓ ...shouldn't allow users to burn

Ctx
✓ ...should permit (338ms)
✓ ...should changes allowance (557ms)
✓ ...should allow nested delegation (386ms)
✓ ...should mint (630ms)

GovernorAlpha
✓ ...should test ctx
✓ ...should set timelock
✓ ...should set governor

scenario:TreasuryVester
✓ setRecipient:fail
✓ claim:fail
✓ claim:~half (271ms)
✓ claim:all (266ms)

108 passing (17s)

Code Coverage

Due to the 3 failing tests, the coverage for the directory is 0% across the board. We recommend fixing the tests and improving coverage such that

it is close to 100%.

The issue mentioned above has been fixed and the coverage could be computed for the directory. However, as indicated in the table

below the branch coverage is low for these contracts. We recommend adding more tests and increasing the coverage along with adding assertions to check the intended

effects and side-effects of each test case.

contracts/governance/

Update: contracts/governance/

File % Stmts % Branch % Funcs % Lines Uncovered Lines

contracts/ 93.67 76.32 93.68 93.6

ERC20VaultHandler.sol 100 100 100 100

ETHVaultHandler.sol 93.33 70 100 93.75 116

IVaultHandler.sol 97.62 82.26 96.3 97.66 567,571,572

IWETH.sol 100 100 100 100

LiquidityReward.sol 87.3 68.18 88.24 87.5 … 246,319,320

Orchestrator.sol 94.74 76.92 94.74 93.02 92,99,308

RewardHandler.sol 89.29 66.67 88.89 89.66 … 236,240,241

TCAP.sol 100 87.5 100 100

contracts/governance/ 44.37 25.58 50.88 45.33

Ctx.sol 74.82 45.95 88 75.54 … 527,530,618

GovernorAlpha.sol 3.23 0 10 3.37 … 441,442,445

Timelock.sol 11.9 6.25 22.22 11.9 … 215,217,222

TreasuryVester.sol 94.74 66.67 100 94.74 57

All files 69.95 49.38 77.63 70.99



Appendix

File Signatures

The following are the SHA-256 hashes of the reviewed files. A file with a different SHA-256 hash has been modified, intentionally or otherwise, after the security review. You are cautioned that a
different SHA-256 hash could be (but is not necessarily) an indication of a changed condition or potential vulnerability that was not within the scope of the review.

Contracts

9b9a2a16575e2fe8b20696a5dbd50ffd4874ab7d412e4a3df5ffe2a3f78820e8 ./contracts/ETHVaultHandler.sol

48f2eeed0425d217510330b7ea865c3f3c17669a251222a4f9d980f9d153f0d3 ./contracts/sebi2StakingRewards.sol

3067acf2b02ffac0937b4dc715fb2f0e0092e652ef750efa1685c3f23b6f6df2 ./contracts/IVaultHandler.sol

a2e2f7c7ae8c568179c26c726f029d975e7e4ee5856a52b277b37b2ab736ccd2 ./contracts/Orchestrator.sol

f92b0cb84c05d04da7ef18ce4c8fded70ba99698af073b483c3308c78ae9a004 ./contracts/IWETH.sol

255883931ac26b3518f86c04ccbdee9a12e805bb1fb010d70965e66c380becdd ./contracts/LiquidityReward.sol

8fc90c5c32d7b3e136374371f655195806daab303497af3ff4ecd3a2d8812e2a ./contracts/ERC20VaultHandler.sol

488f09c03f50e830927d04fa9ee6c89306af3e4237984e9eb371a1ec298e2361 ./contracts/TCAP.sol

b896f46d133f4ff3402ce8aa16cd8f2225b2b156f144c4ea930614d689a185da ./contracts/RewardHandler.sol

756897c911ef44bbe39cde828c08e3ada3c8b27d5f8b9f9e803c1920a0ec8449 ./contracts/sebiStakingRewards.sol

d1700f619a9283777ad827bacc773ba4f0964ea41a96a368021fe4f41f367097 ./contracts/governance/TreasuryVester.sol

55df82c54711f986cfc7dc8fb7ede7f5d2ff2c293bc1c09c1abc832e5329c20c ./contracts/governance/Ctx.sol

c73fcff372d8199b723463fbb403c43a7ed99a80dc0ec64a245516492e02e94b ./contracts/governance/sebiSafeMath.sol

090789c17758ce58417b278ed465e44a9dfc3bca793b0da9ce8e2ae1291f7d3c ./contracts/governance/SafeMath.sol

dba4cf826d2d0666774182f6916ef65e37997c692b2a49442b0aeebfe27b8344 ./contracts/governance/GovernorAlpha.sol

ea4204fc8c5c72a5f4984177c209a16be5d538f1a3ee826744c901c21d27e382 ./contracts/governance/sebiTimelock.sol

64376571ef3c7285913859828c5bcb975836f801f792c443725710f6c397d522 ./contracts/governance/Timelock.sol

450d5ad5f47289f11f489211912ae7234ece85c303189df5b7c51babba70848f ./contracts/governance/sebiTreasuryVester.sol

b5b3265263d3591deb5a6c199bfdeaa655be10ab7392c36edd77986d704b9036 ./contracts/governance/sebiGovernorAlpha.sol

2c5e81aece21281888de638d37783cb9eca11649bbdf310e30ca0f8dbc6eb728 ./contracts/governance/sebiUni.sol

ad1633011649fa19c833b3d20d50bcd9549b882527023d2e02509fc75516184a ./contracts/oracles/ChainlinkOracle.sol

f2de9ff17b73ca87497f1fcaad7eadaa973e6598d3cc0dfd9f5107c18fbe8703 ./contracts/mocks/DAI.sol

c87d65a7a86b00ce2802a8c2a22eae84bb5238756f59ef676612568f3f4c82b8 ./contracts/mocks/WBTC.sol

664207d5a162b6e7acc8c4dd7b4c740c2ac784ffafcd12160a57b0081384ad1c ./contracts/mocks/AggregatorInterfaceStable.sol

50fd5349fe3bc0f7f3a0f85910352becd41ca73ed045c1fc7dfda30243ad5edf ./contracts/mocks/AggregatorInterface.sol

bf8447f7052ad48c07f3e031ac332ce06be77281ad80d122796ca76d5dcdd61d ./contracts/mocks/WETH.sol

c548bba59dafde00e99819f12c726b18bfb3ffded80f320d238e99c504e15ac0 ./contracts/mocks/AggregatorInterfaceTCAP.sol

Tests

51e414e1872d56549cd377461958911750f5e8b129f7eac5dea818cd6d5d4389 ./test/Orchestrator.test.js

45deedc01288cafeb3e23e1581deed79e80db55f2610d4b71618ff9fb335bba8 ./test/ChainlinkOracle.test.js

a5ade862d59f12e33b25928de76fb9cb92e6c99e79736a1a3eaf599adcedc831 ./test/ETHVaultHandler.test.js

273d2cccd2b31692426aac4508c97c0f5b98c2611d3c6c488a32023eba513b1c ./test/TCAP.test.js

8901e462232e7abe44e3483d8564cd7c56ef7a4987acd417a42e4e2b7af0a519 ./test/RewardHandler.test.js

3021ef52d175a7479efdb6e01e840b8c398a0c6596a30ba7e14d6dc6a7196345 ./test/LiquidityRewards.test.js

5ef865242759b22610cdaecfe6bc2b00d4fe5998b5278f2b057d10c00b48b0d2 ./test/ERCVaultHandler.test.js

7cb2113a1ae5fb5bc6df08b67979b7969ff56663ed8e2339ee5688ed5babb582 ./test/governance/fixtures.ts

7c6f161a8455eec6c7e4e3b8f446561d9a28480ced5059c52b53113dbd505406 ./test/governance/utils.ts

63ea0130bdc834fb3b7830c759f254a36e4db4ee1bccafc3f80aa5d404a72768 ./test/governance/Ctx.test.ts

30e743ea02b8d7b923f5a95d991b9f286876c714395162ccada9cdf4eaca3f6d ./test/governance/TreasuryVester.test.ts

a854277b2b679ced8d1aa7eccf2d1b7caa90c6b1a0626f19018dedaddae0ae5e ./test/governance/GovernorAlpha.test.ts

Changelog

2021-03-18 - Initial report based on diff between commits• 9bd0481…755d32e



About Quantstamp

Quantstamp is a Y Combinator-backed company that helps to secure blockchain platforms at scale using computer-aided reasoning tools, with a mission to help boost the

adoption of this exponentially growing technology.

With over 1000 Google scholar citations and numerous published papers, Quantstamp's team has decades of combined experience in formal verification, static analysis,

and software verification. Quantstamp has also developed a protocol to help smart contract developers and projects worldwide to perform cost-effective smart contract

security scans.

To date, Quantstamp has protected $5B in digital asset risk from hackers and assisted dozens of blockchain projects globally through its white glove security assessment

services. As an evangelist of the blockchain ecosystem, Quantstamp assists core infrastructure projects and leading community initiatives such as the Ethereum

Community Fund to expedite the adoption of blockchain technology.

Quantstamp's collaborations with leading academic institutions such as the National University of Singapore and MIT (Massachusetts Institute of Technology) reflect our

commitment to research, development, and enabling world-class blockchain security.

Timeliness of content

The content contained in the report is current as of the date appearing on the report and is subject to change without notice, unless indicated otherwise by Quantstamp;

however, Quantstamp does not guarantee or warrant the accuracy, timeliness, or completeness of any report you access using the internet or other means, and assumes

no obligation to update any information following publication.

Notice of confidentiality

This report, including the content, data, and underlying methodologies, are subject to the confidentiality and feedback provisions in your agreement with Quantstamp.

These materials are not to be disclosed, extracted, copied, or distributed except to the extent expressly authorized by Quantstamp.

Links to other websites

You may, through hypertext or other computer links, gain access to web sites operated by persons other than Quantstamp, Inc. (Quantstamp). Such hyperlinks are

provided for your reference and convenience only, and are the exclusive responsibility of such web sites' owners. You agree that Quantstamp are not responsible for the

content or operation of such web sites, and that Quantstamp shall have no liability to you or any other person or entity for the use of third-party web sites. Except as

described below, a hyperlink from this web site to another web site does not imply or mean that Quantstamp endorses the content on that web site or the operator or

operations of that site. You are solely responsible for determining the extent to which you may use any content at any other web sites to which you link from the report.

Quantstamp assumes no responsibility for the use of third-party software on the website and shall have no liability whatsoever to any person or entity for the accuracy or

completeness of any outcome generated by such software.

Disclaimer

This report is based on the scope of materials and documentation provided for a limited review at the time provided. Results may not be complete nor inclusive of all

vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available basis. You agree that your access and/or use, including but not limited to any

associated services, products, protocols, platforms, content, and materials, will be at your sole risk. Blockchain technology remains under development and is subject to

unknown risks and flaws. The review does not extend to the compiler layer, or any other areas beyond the programming language, or other programming aspects that

could present security risks. A report does not indicate the endorsement of any particular project or team, nor guarantee its security. No third party should rely on the

reports in any way, including for the purpose of making any decisions to buy or sell a product, service or any other asset. To the fullest extent permitted by law, we disclaim

all warranties, expressed or implied, in connection with this report, its content, and the related services and products and your use thereof, including, without limitation, the

implied warranties of merchantability, fitness for a particular purpose, and non-infringement. We do not warrant, endorse, guarantee, or assume responsibility for any

product or service advertised or offered by a third party through the product, any open source or third-party software, code, libraries, materials, or information linked to,

called by, referenced by or accessible through the report, its content, and the related services and products, any hyperlinked websites, any websites or mobile applications

appearing on any advertising, and we will not be a party to or in any way be responsible for monitoring any transaction between you and any third-party providers of

products or services. As with the purchase or use of a product or service through any medium or in any environment, you should use your best judgment and exercise

caution where appropriate. FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF, INCLUDING ANY ASSOCIATED SERVICES OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

Cryptex Finance Audit


